Mining Multiple Level Non-redundant Association Rules through Two-Fold Pruning of Redundancies
نویسندگان
چکیده
Association rules (AR) are a class of patterns which describe regularities in a set of transactions. When items of transactions are organized in a taxonomy, AR can be associated with a level of the taxonomy since they contain only items at that level. A drawback of multiple level AR mining is represented by the generation of redundant rules which do not add further information to that expressed by other rules. In this paper, a method for the discovery of non-redundant multiple level AR is proposed. It follows the usual two-stepped procedure for AR mining and it prunes redundancies in each step. In the first step, redundancies are removed by resorting to the notion of multiple level closed frequent itemsets, while in the second step, pruning is based on an extension of the notion of minimal rules. The proposed technique has been applied to a real case of analysis of textual data. An empirical comparison with the Apriori algorithm proves the advantages of the proposed method in terms of both time-performance and redundancy reduction.
منابع مشابه
Mining Condensed Non-Redundant Level-Crossing Approximate Association Rules
In association rule mining one intractable problem is the huge number of the extracted rules, especially, in the case of level-crossing association rules. In this paper, aiming at the redundancy produced during level-crossing association rules mining, an approach for eliminating level-crossing approximate redundant rules is proposed. In the method, the redundancies are divided combination with ...
متن کاملA Novel Method of Mining Association Rule with Multilevel Concept Hierarchy
In data mining, there are several works proposed for mining the association rules which are frequent. Researchers argue that mining the infrequent item sets are also important in certain applications. Discovering association rules are based on the preset minimum support threshold given by domain experts. The accuracy in setting up this threshold directly influences the number and the quality of...
متن کاملA lattice-based approach for mining most generalization association rules
Traditional association rules consist of some redundant information. Some variants based on support and confidence measures such as non-redundant rules and minimal non-redundant rules were thus proposed to reduce the redundant information. In the past, we proposed most generalization association rules (MGARs), which were more compact than (minimal) non-redundant rules in that they considered th...
متن کاملMARBLES: Mining Association Rules Buried in Long Event Sequences
Sequential pattern discovery is a well-studied field in data mining. Episodes are sequential patterns that describe events that often occur in the vicinity of each other. Episodes can impose restrictions on the order of the events, which makes them a versatile technique for describing complex patterns in the sequence. Most of the research on episodes deals with special cases such as serial and ...
متن کاملPruning and Summarizing the Discovered Time Series Association Rules from Mechanical Sensor Data
Sensors are widely used in all aspects of our daily life including factories, hospitals and even our homes. Discovering time series association rules from sensor data can reveal the potential relationship between different sensors which can be used in many applications. However, the time series association rule mining algorithms usually produce rules much more than expected. It‟s hardly to unde...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009